Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
ACS Omega ; 8(33): 30095-30108, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636959

RESUMO

The degradation of organic dye pollutants is a critical environmental issue that has garnered significant attention in recent years. To address this problem, we investigated the potential of CaCrO4 chromite (CCO) as a photocatalyst for the degradation of cationic and anionic dye solutions under sunlight irradiation. CaCrO4 was synthesized via a sol-gel auto-combustion route and sintered at 900 °C. The Rietveld refined XRD profile confirmed the zircon-type structure of CaCrO4 crystallized in the tetragonal unit cell with I41/amd space group symmetry. The surface morphology of the sample was investigated by field emission scanning electron microscopy (FESEM), which revealed the polyhedral texture of the grains. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) studies were carried out to analyze the elemental composition and chemical states of the ions present in the compound. Fourier transform infrared (FT-IR) spectroscopy analysis revealed the vibrational modes corresponding to the tetrahedral and dodecahedral metal oxide bonds. The optical band gap was approximated to be in the range of 1.928 eV by using the Tauc relation. The CaCrO4 catalyst with different contents (5, 20, 35, and 50 mg) was investigated for its photocatalytic performance for the degradation of RhB dye solution under sunlight irradiation using a UV-Vis spectrometer over the experimental wavelength range of 450-600 nm. The degradation efficacy increased from 70.630 to 93.550% for 5-35 mg and then decreased to 68.720% for 50 mg in 140 min under visible light illumination. The comparative study demonstrates that a higher degradation rate was achieved for cationic than anionic dyes in the order RhB > MB > MO. The highest deterioration (93.80%) was achieved for the RhB dye in 140 min. Equilibrium and kinetic studies showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of 21.125 mg/g was observed for the catalyst concentration of 35 mg. From the cyclic test, it has been observed that the synthesized photocatalyst is structurally and morphologically stable and reusable. The radical trapping experiment demonstrated that superoxide and hydroxyl radicals were the primary species engaged in the photodegradation process. A possible mechanism for the degradation of RhB has been proposed. Hence, we conclude that CaCrO4 can be used as an efficient photocatalyst for the remediation of organic dye pollutants from the environment.

3.
Front Chem ; 9: 717074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513796

RESUMO

A simplified sol-gel method that can be scaled up for large-scale production was adopted for the preparation of manganese oxide nanocrystals. Prepared Mn2O3 exhibited micron-sized particles with a nanoporous structure. In the present study, a simple and low-cost strategy has been employed to fabricate nanoporous Mn2O3 with an increased surface area for an electrode/electrolyte interface that improved the conduction of Mn2O3 material. The crystal phase and morphology of the prepared material was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The prepared electrode materials were deposited on a nickel foam substrate to investigate the electrochemical properties. The galvanostatic charge/discharge (GCD), cyclic voltammetry (CV), and complex impedance studies confirmed excellent specific capacitance and capacitive behavior of the prepared material. The synthesized Mn2O3/graphene composites exhibited an excellent specific capacitance of 391 F/g at a scan rate of 5 mV/S. Moreover, a specific capacitance of 369 F/g was recorded at a current density of 0.5 A/g using the galvanostatic charge/discharge test. The high porosity of the materials provided a better electrolyte-electrode interface with a larger specific area, thus suggesting its suitability for energy storage applications.

4.
Front Chem ; 9: 661723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898395

RESUMO

There is lot of research work at enhancing the performance of energy conversion and energy storage devices such as solar cells, supercapacitors, and batteries. In this regard, the low bandgap and a high absorption coefficient of CdSe thin films in the visible region, as well as, the low electrical resistivity make them ideal for the next generation of chalcogenide-based photovoltaic and electrochemical energy storage devices. Here, we present the properties of CdSe thin films synthesized at temperatures (below 100°C using readily available precursors) that are reproducible, efficient and economical. The samples were characterized using XRD, FTIR, RBS, UV-vis spectroscopy. Annealed samples showed crystalline cubic structure along (111) preferential direction with the grain size of the nanostructures increasing from 2.23 to 4.13 nm with increasing annealing temperatures. The optical properties of the samples indicate a small shift in the bandgap energy, from 2.20 to 2.12 eV with a decreasing deposition temperature. The band gap is suitably located in the visible solar energy region, which make these CdSe thin films ideal for solar energy harvesting. It also has potential to be used in electrochemical energy storage applications.

5.
Braz. arch. biol. technol ; 64: e21210180, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1355831

RESUMO

Abstract There is a great interest to use carbon-based material like graphene and graphene oxide in biomedical applications due to its flexibility to be functionalized with bio-active molecules. Herein, graphene and graphene-based nanocomposites were biosynthesized by liquid-phase exfoliation of graphite using aqueous extract of Parthenium hysterophorous (P-H) as a surfactant. A set of five thin film samples of graphene was prepared from graphene suspension by vacuum filtration method. Samples were characterized by UV-vis spectroscopy, Raman spectroscopy, SEM, and XRD, which revealed successful synthesis of graphene. Graphene/P-H(G/P-H) nanocomposites comprising varied ratios of graphene and P-H were prepared and their antibacterial activity was investigated by agar well diffusion method. The experimental results indicated that G/P-H nanocomposite have higher antibacterial activity than graphene alone, and bioactivity of G/P-H nanocomposite was found to be controlled by the fraction of graphene in the composite.

6.
Front Chem ; 8: 254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411656

RESUMO

Unprecedented self-assembled hierarchical nano-sheets of SnS were synthesized by the hydrothermal method. In a typical reaction, SnCl2.2H2O and Na2S.9H2O were used as reactants. Structural and morphological properties were studied by X-ray diffraction (XRD), and scanning electron microscopy (SEM) while the electrochemical properties were measured by cyclic voltammetry, charge-discharge cycles, and electrochemical impedance spectroscopy (EIS). SEM results showed the 1-D SnS nano-sheets with an average thickness of around 20 nm. Cyclic voltammogram and charge-discharge spectra showed good cycling stability. All these results showed that SnS nano-sheets are promising candidate material to be used as electrode for Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...